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1. Extracellular spike detection

This section describes pre-processing of the data recorded on the silicon probe (described

in main text and Online Methods) prior to analysis. The extracellular signal was sepa-

rated online into an LFP component (0-0.3 kHz) sampled at 3 kHz, and a high frequency

component (0.3-5 kHz) sampled at 25 kHz. The high frequency component was used to

detect spikes offline. Before looking for spikes on the extracellular electrodes, we removed

stimulus-induced and spike-induced artifacts. For the former, we identified null-stimuli –

stimuli that did not trigger intracellular spikes (see point 1 in Fig. S1a for an example and

Fig. S1b for an average) – and used them to compute the null-stimulus triggered average

on each channel. We then subtracted each channel’s null-stimuli triggered average from the

channel signal (aligned, of course, on each stimulus). To remove spike-induced artifacts,

we followed essentially the same procedure, except that we computed an average voltage

triggered on spontaneous intracellular spikes (which induced a very small capacitive signal;

see Fig. S1a point 2 for an example and Fig. S1c for an average). We then subtracted each

channel’s spontaneous-spike triggered average from the channel signal, this time aligned on

all intracellular spikes (spontaneous as well as triggered).

To improve the quality of the signal, we applied a low-pass filter based on the noise

spectrum. The noise spectrum was estimated from the intracellular recordings during the
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Figure S1: Simultaneous intracellular and extracellular recordings. a. A one second ex-
ample of intracellular voltage (top) and simultaneous extracellular voltage on a 16 channel
electrode (bottom, band-passed 0.3-5 kHz). Dashed red lines indicate stimulus onset. b.
Average extracellular voltage triggered on stimuli that did not produce a spike (point 1 in
panel a). This average is a capacitive artifact, and was subtracted from the voltage on each
channel. c. Average extracellular voltage triggered on intracellular spikes (point 2 in panel
a). This average is also a capacitive artifact (although a much smaller one), and was also
subtracted from the voltage on each channel. d. After subtracting the artifacts, the signal
on each channel was normalized to the noise (so the vertical scale bar has units of standard
deviation) and smoothed using a Wiener filter (see text). Fast, large events were considered
candidate spikes (red dots). These often occurred simultaneously on neighboring channels,
in which case only the largest spike (over a range of 5 channels) was included in the analysis.
Included spikes are marked with a green circle; events without a green circle were discarded.
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down states (during which there were never any spikes on the extracellular electrodes). The

spectrum was then used to construct a Wiener filter (using Matlab wiener2 imaging toolbox

function). Filtering the data resulted in a 15-30% improvement in signal to noise ratio for

spike detection, with negligible effect on spike amplitude or shape.

Finally, to simplify the analysis, we normalized the voltage on each channel to the stan-

dard deviation of the noise on that channel. To estimate the standard deviation, we used

median(|V |)/0.6745 where V is the voltage. This estimator avoids the upward bias associ-

ated with excursions in voltage caused by action potentials.1 After normalization, candidate

spikes were identified based on two criteria:

• There was a local minimum with amplitude greater than six standard deviations,

• There were zero-crossings less than 0.5 ms before the minimum and 1.0 ms after it.

Multiple spikes – spikes occurring within 0.5 ms of each other – were often detected on

neighboring channels. When this happened, only one spike was selected (the one with the

largest amplitude); the rest were discarded. This is illustrated in Fig S1d, where red dots

are used to indicated all candidate spikes and red dots surrounded by green circles denote

spikes used in the analysis.

2. Two experimental paradigms predict the same probability of an extra spike

Our results were primarily derived from two sets of experiments. The first measured the effect

of current injections into single neurons in vivo (Fig. 3, main text); the second measured the

effect of current injections on the surrounding networks (Fig. 4, main text). The question

we address now is: do these two experiments give consistent results? To answer this, we

compute the local increase in firing rate predicted by the first set of experiments and compare

that to the increase measured in the second.

In our current injection experiments, we found that a single extra presynaptic spike

increased the probability of a postsynaptic spike in a connected neuron by approximately

2% for 5 ms (Fig. 3, main text). This corresponds to 2 extra spikes per 100 trials per 5

ms, which in turn corresponds to an increase in firing rate of 4 Hz. To determine what this

implies for the extracellular recordings, the first observation is that connectivity in barrel

cortex is sparse, with a connection probability of about 4%.2 Thus, if the extra spikes on the
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extracellular electrodes all occurred within 5 ms, the expected increase in firing rate would

be 0.16 Hz (0.04× 4 Hz). It is unlikely that they do, however, because spikes were triggered

using current pulses lasting 2.5-10 ms, causing a range of timings of the extra presynaptic

spike. In addition, axonal delays, dendritic filtering, and latency to spike can further spread

out the time of the postsynaptic spikes, adding another 1-5 ms. Thus, the extra postsynaptic

spikes should occur primarily within 10-20 ms from the start of the stimulus, which implies

an increase in firing rate of 0.04-0.08 Hz (i.e., a factor of 2-4 smaller than the 0.16 Hz increase

expected if all the spikes were to occur within 5 ms). Assuming that the average firing rate

in somatosensory cortex is 1 Hz,3 this is very close to the 0.03-0.065 Hz increase we see in

the first 10-20 ms in the inset of Fig. 4c. Thus, not only does a single extra spike introduced

into somatosensory cortex produce a measurable effect on the network – one that lasts for

more than 50 ms – it produces an effect whose size is predicted by our single-neuron current

injection experiments (Fig. 3, main text).

3. Detecting up and down states

Two key parameters in our analysis are the standard deviation of the membrane potential

and the rate of rapidly depolarizing events. Both need to be calculated only during the up

state, since it is the up state that resembles the in vivo membrane potential trajectory.4,5

Here we describe our procedure for separating the up states from the down states.

A typical voltage trace from an in vivo, whole cell recording is shown in Fig. S2a (see

Sec. 1). Recordings were made in 11 second traces. To suppress spiking, we injected steady

hyperpolarizing current between -250 and -450 pA; typically the amount of current required

to suppress spiking was the amount required to hold the cell at -75 mV during voltage

clamp. No current was injected during the first and last 250 ms. The first 500 ms of the

hyperpolarized trace were discarded to avoid the sag associated with the Ih current, since

the sag affects input resistance and complicates the detection of up and down states. We

recorded until access resistance increased to 60 MΩ.

Up and down states are clearly visible, although they are somewhat irregular. The

procedure for finding which portions of the voltage trace correspond to the up state is,

briefly, as follows: find the voltage that corresponds to the down state, label as up all

portions of the voltage trace that are more than 3 mV above the down state voltage, and fill
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Figure S2: Detecting up and down states. a. A typical voltage trace from an in vivo,
whole cell recording. Red labels up states; black labels down states. To suppress spiking,
we hyperpolarized the cell by injecting negative current between -250 and -450 pA. b. Low
pass filtered (25 Hz cutoff) membrane potential. The linear trend was subtracted to provide
a flat baseline. The histogram of voltages is shown at the right. The highest peak in the
histogram corresponds to the down state (Vd; bottom dashed line). The up state, Vu, is 3
mV higher.

in any remaining short segments.

The hard part is finding the voltage that corresponds to the down state. This is done in

several sub-steps. First, we low pass filter the voltage at 25 Hz to remove noise, and then

subtract any linear trend in the data to give us a flat baseline. The resulting voltage trace

is shown in Fig. S2b. Second, we construct a histogram of membrane potentials, binned at

1 mV (right side of Fig. S2b). Third, and last, we find the peak of the histogram and use

that for the membrane potential of the down state, which we refer to as Vd (bottom dashed

line in Fig. S2b). These sub-steps are carried out separately for each trace.

The next step is to set a threshold for up states, Vu, at Vu = Vd + 3 mV (top dashed

line in Fig. S2b). All portions of the trace with voltages above Vu are candidates for the up
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state. To avoid labeling brief hyperpolarizing transients as down states, any gaps between

up states that are less than 150 ms are also candidates for the up state. Then, to eliminate

rapid transients associated with down to up transitions, we eliminate the first 20 ms of all

the up states.

The up and down states produced by this procedure are labeled red and black, respec-

tively, in Fig. S2a. The up states were used to compute three quantities: the rate of rapidly

depolarizing events (Fig. 5b, main text); the distribution of intrinsic fluctuations, p(σV ) (Eq.

(S21) and Fig. S7); and the fraction of time the neurons spent in the down state (Fig S3e).

4. Biophysically realistic model

The experiments summarized in Fig. 3b of the main text tell us the probability of an extra

spike as a function of the amplitude of a current pulse injected at the soma. What we

want, however, is the average probability of a spike in response to realistic PSCs in vivo.

Fortunately, it turns out (as we show below using a biophysically realistic neuron, and as has

been shown theoretically in the limit of small PSC size6,7) that the probability of an extra

spike depends almost exclusively on the total charge injected into a neuron, and not the time

course of that charge. Therefore, because probability is approximately linear in charge (see

Fig. 3b, main text), the average probability of an extra spike in vivo is a function only of

the average charge in a PSC in vivo.

This section is divided into two parts. In the first, we show that the probability of

an extra spike depends almost exclusively on the total charge. In the second, we combine

published data on PSP size with the electrophysiological properties of our cells to estimate

the average charge in a PSC in vivo.

Probability depends only on injected charge

To investigate the relationship between PSCs and the probability of an extra spike, we

constructed a biophysically realistic model of a neuron, including its active dendritic tree,

with passive properties that matched those of the neurons we record from in vivo. It was

based on a published model of a layer 5 pyramidal neuron,8 but with three changes: 1) the

temperature of the model was increased from 23◦ C to 37◦ C, 2) as this speeds up action

potential kinetics, all membrane conductances were increased by a factor of three, and 3)

the passive reversal potential was set to -75 mV rather than -70 mV. We mimicked in vivo
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conditions9,10 by bombarding the model neuron with synaptic input sufficiently large to

generate voltage fluctuations on the order of 3 mV at the soma and a firing rate of 2.6 Hz.

To determine how realistic PSCs affected our simulated neuron, we computed numeri-

cally the probability of an extra spike in response to conductance changes at various points

along the dendritic tree and current injection at the soma (see schematic in Fig. S3a). The

probability was found by comparing two long trials (at least 10,000 s) in which the neurons

received exactly the same synaptic input, but on the second trial received a conductance

change every 100 ms. We then counted the number of spikes on the two trials in the 100

ms that followed the conductance change and took the difference; the probability of an ex-

tra spike was the average difference per conductance change. A typical 200 ms segment

containing the two trials is shown in Fig. S3b.

Note that in our simulations we counted spikes for 100 ms after the conductance change,

whereas in our experiments we counted spikes for only 5 ms (Figs. 2b and 3a, main text).

That’s because in our simulations the background synaptic input was identical on the two

trials, so counting for long times didn’t introduce noise. This can be seen in Fig. S3c, which

shows the cumulative probability of an extra spike versus time since the conductance change:

after a transient period lasting 30-40 ms, the cumulative probability is completely flat. This

validates our procedure, and also shows that we really are seeing extra spikes, not simply

shifted ones, since if the spikes were merely shifted the cumulative probability would return

to baseline.

The conductance change on the dendrites was calibrated so that the total charge at the

soma (computed from the time integral of the PSP; see Eq. (S1) below) took on discrete

values, either ±0.062, ±0.123, or ±0.247 pC, corresponding to current amplitudes of ±25,

±50 or ±100 pA. In Fig. S3d we plot the probability of an extra spike versus distance along

the dendritic tree (with zero distance corresponding to somatic current injection) for three

different somatic charges: 0.062 pC (blue dots), 0.123 pC (green dots) and 0.247 pC (red

dots). In all cases the plots of probability versus distance are essentially flat – even though

the shape of the somatic PSP has a strong dependence on distance (inset, to the right of the

green dots).

These results suggest that what determines the probability of an extra spike is total

charge at the soma. This conclusion could, of course, be specific to our particular simulated
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Figure S3: The probability of an extra spike depends on total charge at the soma, and not
the shape of the PSP. a. Schematic showing our model cell, which consists of a biophysically
realistic compartmental model of a layer 5 pyramidal neuron. Charge was injected via
conductance changes (except at the soma, where current was injected), and spikes were
recorded at the soma. b. Typical traces showing two trials: one (black) on which the neuron
did not receive a conductance change, another (green) on which it received a conductance
change corresponding to a total charge of 0.123 pC. Inset shows a conductance change that
did not cause an extra spike. c. Cumulative probability of an extra spike in response to a
conductance change (which occurred at time t = 0). Blue, green and red traces correspond
to charges of 0.062, 0.123 and 0.247 pC, respectively. d. Probability of an extra spike in
response to a somatic current injection (distance = 0 µm) or conductance changes at various
points along the dendritic tree. As in panel c, blue, green and red dots correspond to charges
of 0.062, 0.123 and 0.247 pC, respectively. Inset: somatic PSP waveforms for conductance
changes along the dendritic tree. e. Red and green: probability of an extra spike (for
positive current changes) or a missed spike (for negative ones) versus charge, computed from
our model neuron and scaled by a factor of 0.49 to take into account the fact that our model
did not exhibit up and down states; see text. Red points correspond to current injected at
the soma; green points to current injected at the distal dendrites, 403 µm from the soma.
Black: probability measured experimentally; see Fig. 3b, main text.
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neuron. However, that is unlikely, for two reasons. First, our model neuron was chosen

more or less at random, from many possible models. Second, our results are consistent with

theoretical analysis6,7 which showed rigorously that, for sufficiently small PSCs, it is total

charge – and not anything else – that determines the probability of an extra spike.

Nevertheless, it is reasonable to ask that our model provides results that are close to

those of our experimental observations (Fig. 3b, main text). In Fig. S3e we combine the

data from our actual experiments (black points) with those from the simulations (red and

green points, corresponding to injections at the soma and on the distal dendrites, 403 µm

from the soma; error bars were dropped for clarity). For the latter, we corrected for up and

down states by reducing the probability of an extra spike. This is because in our experiments

the neurons spent 49% of their time in up states (computed from a random sample of 377

10-second traces from 5 cells), whereas in the simulations the neurons were always in the

up state. Because extra spikes cannot occur in the down state, our simulations provided

an overestimate of the probability of an extra spike. Thus, in Fig. S3e, for the model (red

and green points) we multiply the probability of an extra spike by 0.49. When we do this,

agreement between the simulations and experiments is very good.

Average charge in vivo

To determine the somatic charge that corresponds to the average PSC evoked by a single

connection in vivo, we turn to published data. Because it is typically voltage, rather than

charge, that is measured in experimental studies of synaptic connections, we need to translate

between the two. The injected charge is related to the time integral of the PSP by the inverse

of the membrane resistance, so we have

Q =
1

R

∫

dt VPSP(t) (S1)

where Q is the total charge at the soma, VPSP(t) is the time-dependent PSP at the soma,

and R is the membrane resistance. To estimate Q, we need two quantities: the membrane

resistance and the time integral of the PSPs. For the membrane resistance, we use the input

resistance of our recorded cells, which was 42 ± 4.3 MΩ (n=28), consistent with published

values.9,11, 12 For the time integral of the PSPs, we use published values of the connection

strength between layer 5 pyramidal cells measured in vitro. These range from 0.85 to 1.3
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mV (including failures).13–16 To estimate the PSP time course, we approximate it by a

difference of exponentials. For the decay time, we use our measurements of the membrane

time constant in vivo (8 ms). For the rise time, we use the fact that the membrane potential

cannot rise faster than the synaptic conductance decays. Since the latter is 1.7 ms,17 we

use that for the rise time. The integral in Eq. (S1) thus ranges from 10.4-15.8 mV-ms, or

13.1±2.7 mV-ms (see Eq. (S38)). Dividing this by the effective input resistance, 42±4.3 MΩ,

and using log normal statistics, we find that the average charge per connection is 0.31±0.07

pC. Note, therefore, that 0.31 pC corresponds to about 1 mV.

5. The effect of feedforward inhibition

In our analysis of the effects of missed and extra spikes, we made the simplifying assumption

that time is discretized into finite steps, and there is no interaction within a time step (see

Fig. 1a of the main text). Far more realistic, however, is asynchronous production of missed

and extra spikes. This would allow, at least in principle, a scenario that is prohibited by the

no-interaction assumption (see Fig. S4a): an extra spike occurs on an excitatory neuron, the

first extra spike it produces is on an inhibitory neuron, that inhibitory neuron sends extra

spikes to the postsynaptic targets of the original neuron, and the extra spikes that would

have occurred are canceled (green arrows in Fig. S4a, and compare to Fig. 1a of the main

text). If this, and this alone, were to happen, perturbations would die out very quickly.

In fact, this kind of feedforward inhibition18 is likely to reduce the number of extra spikes

on excitatory neurons. However, that’s not its only effect; it also leads to missed spikes,

by canceling spikes that were not extra (i.e., by canceling spikes that would have existed

whether or not there was an extra presynaptic spike; see black arrows in Fig. S4a). If every

canceled spike is balanced by at least one missed spike, then perturbations grow just as

rapidly as they would have in the absence of feedforward inhibition. That’s because, by

symmetry, a missed spike on one trial corresponds exactly to an extra spike on another.

To determine quantitatively the relationship between canceled and missed spikes, consider

what happens in response to a single extra spike on an excitatory neuron. That extra spike

delivers charge to each of its postsynaptic targets; say average charge qE
i to excitatory neuron

i. Charge is also delivered to inhibitory neurons, which causes them to produce extra spikes.

Those extra spikes in turn deliver negative charge to their postsynaptic targets; say average
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Figure S4: Feedforward inhibition. a. Same setup as in Fig. 1a of the main text, except
that the first extra postsynaptic spike is on an inhibitory neuron (red arrow at the bottom
of the panel). The extra inhibitory spike then cancels the two extra excitatory spikes that
would have occurred without the inhibition (green arrows, and see Fig. 1a of the main text).
The extra inhibitory spike also causes missed spikes (black arrows). b. Overlapping and non-
overlapping neurons. Neurons that receive disynaptic input via an inhibitory neuron and
a direct connection from the reference neuron are considered to be overlapping; those that
receive disynaptic input via an inhibitory neuron and no direct connection from the reference
neuron are considered to be non-overlapping. Note that whether a neuron is overlapping or
non-overlapping depends on the reference neuron.

charge −qI
i to excitatory neuron i.

The negative charge has two effects. One is to reduce the probability of an extra spike

on “overlapping” neurons – on neurons that receive both positive charge from a presynaptic

neuron and, indirectly, negative charge from the same presynaptic neuron, via a disynaptic

connection involving an inhibitory neuron (see Fig. S4b). The reduction is proportional to
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the total negative charge from the inhibitory neuron times the slope of the positive portion

of the regression line in Fig. 3b of the main text. Using S+ to denote that slope, the number

of canceled spikes, denoted ncanceled, is given by

ncanceled = S+

∑

i

Θ(qE
i ) min(qI

i , q
E
i ) ,

where Θ is the Heaviside step function: Θ(q) = 1 if q > 0 and 0 otherwise. The step function

picks out the postsynaptic targets of the original extra spike, and the “min” operation (which

returns the minimum of its two arguments) enforces the fact that negative charge larger than

qE
i does not contribute to canceling extra spikes.

The second effect of negative charge is to cause missed spikes, which can happen in two

ways: via negative charge on non-overlapping neurons (neurons that receive a disynaptic

connection involving an inhibitory neuron but no direct connection; see Fig. S4b), and excess

negative charge on overlapping neurons. Using S− to denote the absolute value of the slope

of the negative portion of the regression line in Fig. 3b of the main text, and nmissed to

denote the number of missed spikes, we have

nmissed = S−

∑

i

[

qI
i − qE

i

]+
,

where [·]+ is the threshold linear function: [x]+ = max(x, 0). (Neurons for which qE
i = 0 are

non-overlapping; neurons for which qE
i > 0 are overlapping.)

We can now compute our quantity of interest, the ratio of missed to extra spikes averaged

over trials and pre and postsynaptic neurons. That ratio is given by

nmissed

ncanceled

=
S−

S+

QI
nonoverlap

QI
overlap

,

where QI
nonoverlap and QI

overlap are the average charges delivered to non-overlapping and over-

lapping neurons, respectively; using angle brackets to indicate an average over which presy-

naptic excitatory neuron produces the original extra spike and over the amount of charge

associated with each extra spike on both excitatory and inhibitory neurons, these quantities

are given by
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QI
nonoverlap =

〈

∑

i

[

qI
i − qE

i

]+

〉

QI
overlap =

〈

∑

i

Θ(qE
i ) min(qI

i , q
E
i )

〉

.

The slopes S− and S+ were determined experimentally to be 0.018 and 0.061, respectively

(see Fig. 3b caption, main text), so their ratio is 1/3.4. Thus, to determine how many missed

spikes there are for every canceled one, all we need to know is how much charge is delivered to

non-overlapping neurons compared to overlapping neurons. If the ratio of these two charges

is greater than 3.4, the number of missed spikes will exceed the number of canceled ones.

To determine the charge ratio, we assume that the charge delivered to a postsynaptic

neuron does not depend on whether that neuron is overlapping or non-overlapping. This

assumption sounds strong, but we should keep in mind that which neurons are overlapping

and which are non-overlapping depends on which neurons produce extra spikes, and so

changes from one trial to the next. Thus, while we don’t necessarily expect independence to

hold on individual trials, we expect it to hold on average.

With the independence assumption, determining the ratio of the charge delivered to non-

overlapping versus overlapping neurons becomes simply a matter of counting the number of

each, and taking their ratio. These two numbers depend primarily on the projection patterns

of the excitatory neurons. For example, if connectivity is all to all, then all neurons are over-

lapping, and inhibitory neurons could indeed cancel all extra spikes. However, connectivity

in the brain is not all to all, but sparse: locally, the connection probability of excitatory

neurons is 4-10%.2,14, 16 With this degree of sparseness, if inhibitory neurons made random

connections, the ratio of non-overlapping to overlapping neurons would be at least 9:1 (be-

cause the probability that an inhibitory neuron would project to the postsynaptic target of

a particular excitatory neuron would be 1/10). Inhibitory neurons are not, of course, likely

to make random projections. However, as shown by Holmgren and colleagues,2 the connec-

tivity patterns of excitatory and inhibitory neurons in barrel cortex are very different, with

inhibitory neurons making very local connectivity and excitatory neuron making (relatively)

long range connectivity. This rules out the possibility that inhibitory neurons make most
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of their connections to overlapping neurons, because that would require, at a minimum,

each inhibitory neuron to have approximately the same projections pattern as at least one

excitatory neuron (see Fig. S4b).

With a 9:1 ratio of non-overlapping to overlapping neurons, for every spike canceled by

feedforward inhibition, there are approximately 2.6 (=9/3.4) missed spikes. Consequently,

feedforward inhibition can only increase the rate at which perturbations grow. Because we

do not know if feedforward inhibition really is fast enough to have much effect, we do not

include it in our analysis, and instead use our naive (and more conservative) estimate of 28

extra spikes per spike.

6. The level of intrinsic noise at equilibrium

In the main text we showed that small perturbations to rat barrel cortex are amplified, and

we estimated, using very qualitative analysis, the level at which they saturate. Here we first

expand on that qualitative analysis, then we provide a much more rigorous one.

Our main tool, both here and in the analysis that follows, is self-consistency between

the probability of a missed or extra spike arriving at a synapse (the presynaptic probability,

denoted ppre) and the probability of a missed or extra spike leaving a neuron (the postsy-

naptic probability, denoted ppost). As mentioned in the main text, if we discretize time,

the presynaptic probability is easy to compute: if a neuron receives m missed and extra

spikes in a time window that corresponds to a typical neuron’s mean integration time, and it

has K presynaptic connections, then ppre = m/K. The postsynaptic probability is slightly

harder, as two steps are required. First, if the m missed and extra spikes received by a

neuron are reasonably uncorrelated, then they produce voltage fluctuations whose standard

deviation, denoted σV , is proportional to m1/2V PSP where V PSP is the PSP size averaged

over excitatory and inhibitory unitary postsynaptic potentials (not necessarily with equal

weighting), and the factor of m1/2 comes from central limit type arguments. Second, because

of the approximate linearity between injected charge and probability (Fig. 3b, main text),

the factor of m1/2 in voltage fluctuations translates into a factor of m1/2 in the probability

of missed and extra spikes. Thus, ppost ∝ m1/2p1 where p1 is a weighted average of the

probability of missed or extra postsynaptic spikes given a single missed or extra presynaptic

spike. We expect p1 to be on the same order as pe (where, recall from the main text, pe is
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the probability of an extra spike), so to first approximation we may write ppost ∝ m1/2pe.

Self-consistency then leads to Eq. (1) of the main text.

While this approach leads to qualitatively correct estimates for the level of intrinsic

fluctuations, it suffers from two problems. The first is that we can show only that σV is

proportional to KpeV PSP (Eq. (2), main text), but we cannot determine the constant of

proportionality. The second is that the analysis relies on a particular discretization time,

which is essentially arbitrary. Thus, in this section we take a much more rigorous approach

and compute quantitatively the level of membrane potential fluctuations in steady state.

The idea is as follows. Consider a recurrent network that receives identical input on

multiple trials, but on each trial has slightly different initial conditions. The different initial

conditions produce both different patterns of spiking activity and different time courses

for the membrane potential at each neuron. Those differences are, of course, related, and

the relation could be calculated two ways: given differences in spiking activity we could

compute the differences in membrane potential (Fig. S5a → S5b), and given differences

in membrane potential we could compute differences in spiking activity (Fig. S5b → S4c).

Importantly, both computations are tractable (with a few simplifying assumptions). Our

strategy, then, is to assume a particular difference in spiking activity (Fig. S5a), use that

to compute differences in membrane potential (Fig. S5b), and use those differences to re-

compute differences in spike trains (Fig. S5c). At equilibrium, the two must be the same, a

fact we use to compute the equilibrium rate of missed and extra spikes, and from that the

equilibrium difference in membrane potential.

In principle, carrying out this procedure is straightforward. In practice, however, there

are technical difficulties associated with computing differences in membrane potential and

spiking activity across two trials, as “difference” is a multi-dimensional quantity. We thus

make two approximations, both of which involve simplified measures of difference. For mem-

brane potential, we use the variance across trials. For spiking activity, we use a variant of

the Victor and Purpura spike train metric19 to both define a distance between spike trains

and to rearrange the spike trains slightly. Loosely, if spikes on two trials are separated by

a sufficiently short time, they are rearranged so that they occur at exactly the same time

(spikes connected by gray lines in Figs. S5a and c); otherwise, they are considered to be

missed or extra spikes (arrows in Figs. S5a and c). Because this procedure underestimates
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Figure S5: Computing membrane fluctuations self-consistently. Two trials of the same
network, with the trials differing only by their initial conditions. Cyan refers to trial 1; red
to trial 2. a. Activity patterns for three neurons. Vertical arrows indicated missed and
extras spikes; gray lines link spikes that are considered to occur at identical times (see text).
b. Synaptic drive for the same three neurons, with differences across trials computed from
the spike trains in panel a. The arrows linking panels a and b indicate that each neuron
receives input from many others. c. Activity patterns, with differences across trial coming
from differences in membrane potential (indicated by the arrows linking panels b and c).
Self-consistency demands that the degree of difference across the two trials is the same in
panels a and c. Again, vertical arrows indicated missed and extras spikes and gray lines link
spikes that are considered to occur at identical times.

the differences in the spiking activity (it explicitly makes spike trains more similar), it un-

derestimates the trial-to-trial fluctuations. Consequently, we do not have to be especially

careful in how we define “sufficiently short time”.

With these simplified distance measures, the self-consistency calculation becomes straight-

forward: First, we assume that missed and extra spikes occur at a particular rate, and com-

pute the trial-to-trial variance in the membrane potential. Second, given that variance, we

compute the rate at which missed and extra spikes occur. Self-consistency is enforced by

equating the rates in the first and second steps.
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Variability in membrane potential given missed and extra spikes

Consider two trials that differ only in their initial conditions. For simplicity, here we consider

deterministic networks; below we generalize to networks that exhibit failures. Expressing the

membrane potential on both trials as a sum of PSPs, and using a tilde to label the second

trial, the difference in synaptic drive between the two trials, measured in voltage, is given by

δV (t) =
∑

jk

vjk(t − tjk) −
∑

jk

ṽjk(t − t̃jk) . (S2)

Here j labels neuron and k labels spikes, so vjk(t− tjk) is the PSP produced by the kth spike

on neuron j, with tjk denoting the time of the kth spike. The subscript k on vjk allows for

trial-to-trial variability in PSP size, which arises both from variations in transmitter release

and from the fact that a neuron’s response to a presynaptic spike depends on its state. Note

that there will, in general, be a different number of spikes on the second trial, so the first

and second sums over k may have different numbers of elements. The sum over j runs

over all neurons connected to the postsynaptic neuron of interest (which should also have a

label, but we have dropped it for clarity). Finally, the vjk can be either positive or negative,

corresponding, respectively, to EPSPs and IPSPs.

The major approximation we make in writing Eq. (S2) is that the membrane potential

adds linearly in response to successive spikes. This is undoubtedly violated at sufficiently

high firing rate, but otherwise it is a reasonable approximation. Besides that, the model

is very general; our formulation does not preclude vjk that are sufficiently complicated to

describe realistic neurons.

The variance of δV , averaged over a time T (which we ultimately take to infinity), is

〈δV 2〉 =
2

T

∫

dt

[

∑

jk,j′k′

vjk(t − tjk)vj′k′(t − tj′k′) −
∑

jk,j′k′

vjk(t − tjk)ṽj′k′(t − t̃j′k′)

]

where the integral over t runs over a range equal to T (e.g., from −T/2 to T/2). To derive

this equation, we used the fact that the first and second trials have the same variance; that

led to the factor of 2.

The first step is to separate the variability due to spike times from the variability in PSP

size, which we do by introducing a second time-integral,
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〈δV 2〉 =
2

T

∫

dτ

[

∑

jk,j′k′

∫

dt vjk(t − τ)vj′k′(t) δ(τ − (tjk − tj′k′)) (S3)

−
∑

jk,j′k′

∫

dt vjk(t − τ)ṽj′k′(t) δ(τ − (tjk − t̃j′k′))

]

.

This expression is valid in the limit that T → ∞, which is needed to shift the limits of

integration on t.

The first sum in Eq. (S3) contains two kinds of spikes: those that occur on the same

neuron and at the same time (j = j′ and k = k′), and all other spikes. Explicitly separating

the two contributions to that term, we may write

∑

jk,j′k′

∫

dt vjk(t − τ)vj′k′(t) δ(τ − (tjk − tj′k′)) = (S4)

∑

jk

∫

dt vjk(t − τ)vjk(t) δ(τ) +
∑

jk 6=j′k′

∫

dt vjk(t − τ)vj′k′(t) δ(τ − (tjk − tj′k′))

where the notation jk 6= j′k′ is shorthand for j 6= j′ or k 6= k′. The first sum on the right

hand side reduces to the average sum of squares of PSPs,

∑

jk

∫

dt vjk(t − τ)vjk(t)δ(τ) =

[

KEνET

∫

dt v2
E(t) + KIνIT

∫

dt v2
I (t)

]

δ(τ) . (S5)

Here E and I refer to excitatory and inhibitory neurons, respectively, K is the average

number of connections per neuron, ν is average firing rate, and the overline refers to averages

over PSPs (i.e., an average over the index j in vjk). The factors of KE and KI come from

the sum on j; the factors of νET and νIT come from the sum on k.

For the second sum in Eq. (S4), we proceed in two steps. First we sum on k′. This

converts the δ-function into a cross-correlogram. It is convenient to define cross-correlogram

between neurons j and j′ (or the auto-correlogram if j = j′), denoted Cjj′(τ), as

Cjj′(τ) ≡ ν−1
j′

∑

k′

δ(τ − (tjk − tj′k′)) ,
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where νj′ is the firing rate of neuron j′. Note that we have chosen a slightly non-standard

normalization in which Cjj′(τ) approaches 1 when |τ | is very large. Assuming that PSP size

is independent of spike times, we have

∑

jk 6=j′k′

∫

dt vjk(t − τ)vj′k′(t) δ(τ − (tjk − tj′k′)) =
∑

j,j′,k

∫

dt vjk(t − τ)vj′(t) νj′Cjj′(τ) .

The second step is to sum over k, which brings out a factor of νjT , and we have

∑

jk 6=j′k′

∫

dt vjk(t− τ)vj′k′(t) δ(τ − (tjk − tj′k′)) =
∑

j,j′

∫

dt vj(t− τ)vj′(t) Tνjνj′Cjj′(τ) . (S6)

Equations (S5) and (S6) take care of the first term in Eq. (S3). They can’t, however, be

directly used for the second, since for that term, in general there are no equal-time spikes

(the PSPs occur on different trials). To get around this problem, we invoke the Victor

and Purpura method,19 as discussed above, and take any spikes from the same neuron that

differ by less than, say, 2.5 ms (half the integration time of extra spikes observed in our

experiments; see Figs. 2b and 3a of the main text), and shift them so that they occur at

equal times (Fig. S6a). Those spikes occur at a rate equal to the difference between the

average firing rate and the rate of extra spikes, the latter denoted νE,ex for extra excitatory

spikes and νI,ex for extra inhibitory ones. Noting also that the cross-correlograms for spikes

on different trials are different from those for spikes on the same trial, we replace Cjj′ with

C̃jj′, and we have

∑

jk,j′k′

∫

dt vjk(t − τ)ṽj′k′(t) δ(τ − (tjk − t̃j′k′)) = (S7)

[

KE(νE − νE,ex)T

∫

dt v2
E(t) + KI(νI − νI,ex)T

∫

dt v2
I(t)

]

δ(τ)

+
∑

j,j′

∫

dt vj(t − τ)ṽj′(t) Tνjνj′C̃jj′(τ) .

Inserting Eqs. (S5-S7) into Eq. (S3), and using the fact that, on average, ṽj′(t) = vj(t), we

arrive at
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trial 1

trial 2

neuron 1 (exc)

neuron 2 (inh)

a)

b)

time

time

Figure S6: Missed and extra spikes. a. Spikes come in two categories: those that are
the same on two trials (or, more accurately, those that are sufficiently close on two trials;
see Figs. S5a and c), and those that are extra. The former are black; the latter, which
occur at rate νE,ex,i or νI,ex,i for neuron i (depending on whether the neuron is excitatory
or inhibitory), are magenta. b. A single trial showing only the extra spikes. Neuron 1 is
excitatory; neuron 2 is inhibitory. To the extent that the extra excitatory and inhibitory
spikes line up perfectly (as shown for the three inhibitory spikes), excitation and inhibition
can exactly cancel, something that reduces voltage fluctuations. However, because there are
about four times fewer inhibitory neurons compared to excitatory ones, and thus about four
times fewer spikes on inhibitory neurons, this cancellation can occur, at most, on only 1/4
of the excitatory spikes. The remaining 3/4 contribute to voltage fluctuations.

〈δV 2〉 = 2KEνE,ex

∫

dt v2
E(t) + 2KIνI,ex

∫

dt v2
I(t) (S8)

+ 2
∑

j,j′

∫

dt dτ νjνj′vj(t − τ)vj′(t)
[

Cjj′(τ) − C̃jj′(τ)
]

.

The last term on the right hand side of Eq. (S8) arises due to correlations among spikes,

since if there were no correlations both Cjj′ and C̃jj′ would be one. It is reasonable to

assume that correlations are larger when considering spikes on the same trial versus spikes

on different trials, which implies that Cjj′ > C̃jj′. This leaves us with a negative contribution

from correlated excitatory and inhibitory spikes, since PSPs from neurons of different types

have opposite signs (vjvj′ < 0 if neuron j is excitatory and neuron j′ is inhibitory or vice

versa). This makes sense intuitively: if extra excitatory spikes tend to be accompanied by

extra inhibitory spikes, that would reduce the voltage fluctuations.

Because of the negative contribution from correlations among excitatory and inhibitory
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spikes, the last term in Eq. (S8) could, in principle, be sufficiently negative to cancel the first

two. To what extent can this happen? To answer that, we return to Eq. (S2), and interpret

it as a sum over the membrane potential associated with spikes that are sufficiently different

on the two trials (see Fig. S5). We then consider the worst case scenario: the connectivity

of inhibitory neurons perfectly matches that of excitatory neurons, and whenever there is an

extra spike on an excitatory neuron there is an accompanying extra spike on an inhibitory

neuron. Indeed, if there were as many inhibitory neurons as excitatory neurons, this scenario

would eliminate the voltage fluctuations altogether. However, there are a factor of four more

excitatory neurons than inhibitory ones, so such a scenario could never lead to complete

cancellation. In fact, as can be seen in Fig. S6b, at worst correlations among excitatory and

inhibitory spikes would eliminate the second term in Eq. (S8) (all inhibitory spikes canceled

by excitatory ones) but it could reduce the first term by only 25% (25% of the excitatory

spikes canceled by inhibitory ones). A conservative estimate of the voltage fluctuations

would, therefore, consist of only the first term in Eq. (S8), reduced by an overall factor

of 3/4. This, though, is extremely conservative, especially since the connectivity patterns

of excitatory and inhibitory neurons in barrel cortex are very different.2 We thus make a

slightly less conservative assumption: inhibitory spikes cancel half the extra excitatory ones.

With this assumption (which is still conservative) the first term in Eq. (S8) is reduced by

12.5% and the second cut in half, leaving the remaining half to restore the missing 12.5%.

This effectively gives us the first term in Eq. (S8), leading to a very simple expression for

the voltage fluctuation,

〈δV 2〉 = 2KEνE,ex

∫

dt v2
E(t) . (S9)

This expression represents a lower bound on the trial-trial variability in synaptic drive

in a deterministic network receiving identical input on multiple trials, but differing in initial

conditions.

The probability of missed and extra spikes given the variability in the synaptic drive

The next step is to compute the probability of a missed or extra spike. Here we use the results

of our simulations, which show that the probability of missed or extra spikes is proportional

to the total charge delivered to the soma (see Sec. 4 and Fig. 3c of the main text). Thus,
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the mean firing rate of extra spikes at time t, computed only for excitatory neurons, may be

written

νE,ex,raw(t) =
η

R
[δV (t)]+ , (S10)

where η is the slope of the positive regression line in Fig. 3b of the main text, in units of

probability/charge, and R is the average input resistance of the cells in our dataset. The

threshold linear operator is needed because νE,ex,raw is the number of extra spikes, so we

don’t want to include missed ones. The extra subscript “raw” refers to the fact that Eq.

(S10) gives us the raw rate of extra spikes; below we will see that it is reduced by an effective

refractory period.

To find the mean value of the firing rate of extra spikes, we average Eq. (S10) over time,

and then turn that into an average over the distribution of δV (for which we use angle

brackets). This leads to

νE,ex,raw =
η

R

1

T

∫

dt [δV ]+ =
η

R

〈

[δV ]+
〉

.

As discussed above, we assume that δV is zero mean and Gaussian, for which the average is

straightforward,

νE,ex,raw =
η

R

〈δV 2〉1/2

(2π)1/2
. (S11)

The rate of extra spikes in Eq. (S11) is the raw rate, and ignores the fact that after

one extra spike the probability of a second one drops. This leads to an effective refractory

period, and thus reduces the actual rate of extra spikes relative to νE,ex,raw. We don’t know

the precise form of this refractory period, but, fortunately, our final result will be insensitive

to the form we use. That’s because the refractory period only becomes important in the

very high noise level, where precise timing has already essentially been eliminated. We thus

use an average refractory period of τr ≡ 1/νE , where, as above νE is the network averaged

firing rate of excitatory neurons. Consequently, the average interval between extra spikes

(which is the inverse of the actual rate of extra spikes, denoted νE,ex) is increased by τr; i.e.,
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1/νE,ex = τr + 1/νE,ex,raw. The actual rate of extra spikes is, then, given in terms of the raw

rate as

νE,ex =
νE,ex,raw

1 + τrνE,ex,raw

=
(η/R)〈δV 2〉1/2/(2π)1/2

1 + τr(η/R)〈δV 2〉1/2/(2π)1/2
. (S12)

Self-consistency

We now have two expressions for the variance of the membrane potential: Eqs. (S9) and

(S12). These can be combined to eliminate νE,ex, giving us a single equation for 〈δV 2〉.

Note, however, that δV is the voltage difference; what we are interested in is the single trial

variance, which is half of 〈δV 2〉. We thus define

σ2
V ≡

〈δV 2〉

2
. (S13)

Then, combining Eqs. (S9) and (S12), we have

σ2
V =

σV η/Rπ1/2

1 + τrσV η/Rπ1/2
KE

∫

dt v2
E(t) . (S14)

It is convenient to define

∆V 2
max ≡

KE

τr

∫

dt v2
E(t) ,

which is the maximum value of the right hand side of Eq. (S14) with respect to σV . Note

that ∆V 2
max is the maximum variance in membrane potential, a quantity we can estimate

from data (see Sec. 3, “Detecting up and down states”, and Fig. S7). With this definition,

the expression for σ2
V simplifies to

σ2
V = ∆V 2

max

σV τrη/Rπ1/2

1 + σV τrη/Rπ1/2
. (S15)

Solving this for σV yields
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σV = ∆Vmax
[1 + 4ξ2]1/2 − 1

2ξ
(S16)

where

ξ ≡
1

∆Vmax

η

Rπ1/2
KE

∫

dt v2
E(t) . (S17)

This expression produces sensible results in the two natural limiting cases: When ξ is

small, σV → ∆Vmaxξ, which is independent of ∆Vmax (see Eq. (S17)). This is as it should

be: at small σV , the refractory period plays no role, and σV is given by its raw value. When

ξ is large, on the other hand, the refractory period becomes important, and the voltage

fluctuations saturate at ∆Vmax.

To compute ξ (which tells us, via Eq. (S16), σV ), we need to determine the quantities

on the right hand side of Eq. (S17). We do that be converting them into experimentally

accessible quantities. We start with the last term, the time integral of the square of the

membrane potential. For that we assume that the PSPs are described by a difference of

exponentials with rise time τrise, decay time τdecay, and amplitude VEPSP (which is a random

variable). The integral on the right hand side of Eq. (S17) is then straightforward (see

Eq. (S39)), and we find that

∫

dt v2
E(t) =

τdecay exp[2(κ log κ)/(κ − 1)]

2(1 + κ)
V 2

EPSP (S18)

where κ ≡ τrise/τdecay is the ratio of the rise time to the decay tine.

To compute V 2
EPSP , we follow Song et al.,14 who found that EPSP amplitudes are well

approximated by a log normal distribution with variance 0.94. For such a distribution,

the ratio of the second moment to the square of the first obeys a simple relationship (see

Eq. (S36b) and rearrange terms slightly),

V 2
EPSP = e0.94 V

2

EPSP . (S19)
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Inserting Eqs. (S18) and (S19) into (S17), we arrive at

ξ =
e0.94

π1/2

exp[2(κ log κ)/(κ − 1)]

2(1 + κ)

τdecay

R∆Vmax
ηKEV

2

EPSP .

The variables η, KE , and V EPSP all have uncertainty associated with them. Thus, ξ has

both a mean and variance. These are computed in Sec. 8 (see Eq. (S34b)), and we find

ξ =
21.42 ± 12.95

∆Vmax

.

We are assuming that all variables follow a log normal distribution, so the relevant variables

are the mean and variance of log ξ; these are given by (see Eq. (S35))

mean[log ξ] ≡ µξ = 3.04 − log ∆Vmax (S20a)

Var[log ξ] ≡ σ2
ξ = 0.31 . (S20b)

Given the distribution of ξ, we can now compute the distribution of σV ; this is given by

p(σV ) =
1

∆Vmax

ξ(σV ) exp
[

−(log[ξ(σV )] − µξ)
2/2σ2

ξ

]

(2πσ2
ξ )

1/2

σ2
V + ∆V 2

max

σ2
V

(S21)

where ξ(σV ) is given in terms of σV , via Eq. (S16), as

ξ(σV ) =
σV /∆Vmax

1 − σ2
V /∆V 2

max

.

The distribution in Eq. (S21) depends on ∆Vmax, which varies from cell to cell. We computed

∆Vmax for five cells, and p(σV ) is plotted for each of them in Fig. S5.

The distribution p(σV ) is important because it is used to compute the rate at which

precisely timed events occur (Fig. 5b of the main text). This is done by measuring event rates

at a particular σV and δτ , as described in Fig. 5a of the main text, and then averaging that

over p(σV ). Specifically, if we use νe(σV , δτ) to denote the rate of event that rise by at least

2σV mV in δτ ms, then the average rate of events with precision δτ is
∫

dσV p(σV )νe(σV , δτ).

Note that both νe(σV , δτ) and p(σV ) vary from cell to cell (the latter because ∆Vmax varies

from cell to cell). The error bars in Fig. 5b of the main text were computed assuming Poisson
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Figure S7: Distribution of σV , computed from Eq. (S21), for nine cells. Dashed and solid
lines are the distributions with and without whisker stimulation, respectively; each had a
different value of ∆Vmax, as shown. For the black traces, whisker stimulation was not applied.
For the green, red and cyan traces, curves that are the same color came from the same cell.

statistics, so that the variance in any measurement is (event count)/T 2 where T is the total

time used to count events.

Failures

In the above analysis, we assumed that all action potentials produce PSPs. This, however, is

unrealistic: a propagating action potential may not arrive at a synapse, or, if it does, it may

fail to cause release of neurotransmitter. In this section, we ask how failures affect the level

of trial-to-trial voltage fluctuations. The answer, not surprisingly, is that failures increase

them.

Failures clearly have no effect on the rate of extra spikes given voltage fluctuations; i.e.,

they do not alter Eq. (S12). They do, however, affect how voltage fluctuations depend on

the rate of extra spikes. To see how, note that the factor νE,ex that appears in Eq. (S9) is the

difference of two quantities: νE and (νE − νE,ex), as can be seen by examining Eqs. (S5) and

(S7), respectively. The first quantity, νE, is the rate of spikes, as observed postsynaptically.

Assuming, for simplicity, that failures occur with probability pf , then this term is reduced

by a factor of 1−pf . The second quantity, (νE −νE,ex), is the rate of coincident postsynaptic

spikes on two different trials. Since the trials are independent, at least with respect to
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failures, this term is reduced by a factor of (1 − pf )
2. Putting these together, we see that

the factor of νE,ex that appears in Eq. (S9) is modified according to

νE,ex → (1 − pf)νE − (1 − pf )
2(νE − νE,ex) = pf(1 − pf )νE + (1 − pf)

2νE,ex .

Consequently, Eq. (S9) becomes

σ2
V = [pf (1 − pf )νE + (1 − pf)

2νE,ex]KE

∫

dt v2
E(t) , (S22)

where we used Eq. (S13) to replace 〈δV 2〉/2 with σ2
V .

We now proceed in three steps: first, we use Eq. (S22) to express νE,ex in terms of σ2
V ;

second, we insert that into Eq. (S12); and third, we solve the resulting equation for σV . The

first step yields

νE,ex =
σ2

V

(1 − pf )2KE

∫

dt v2
E(t)

−
pfνE

1 − pf

. (S23)

The next step is to insert Eq. (S23) into (S12), with 〈δV 2〉/2 replaced by σ2
V , which gives us

σ2
V =

[

(1 − pf )
2 σV η/Rπ1/2

1 + σV τrη/Rπ1/2
+ pf(1 − pf)νE

]

KE

∫

dt v2
E(t) . (S24)

In the limit pf → 0, this expression reduces to Eq. (S14), as it should.

As in the previous analysis, we define ∆V 2
max to be the maximum value of the right hand

side of Eq. (S24) with respect to σV ; this gives us

∆V 2
max =

[

(1 − pf )
2

τr

+ pf (1 − pf)νE

]

KE

∫

dt v2
E(t) =

1 − pf

τr

KE

∫

dt v2
E(t) (S25)

where the second equality came from the fact that τr = 1/νE. The third step is to insert Eq.

(S25) into (S24). Again using τrνE = 1, and performing a small amount of algebra, and we

arrive at
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σ2
V = ∆V 2

max

pf + σV τrη/Rπ1/2

1 + σV τrη/Rπ1/2
. (S26)

Comparing Eq. (S26) to (S15), we see that a nonzero failure rate increases the right

hand side. As is easy to show, this increases σV . Thus, the effect of failures is to increase

trial-to-trial variability.

7. Network simulations

Our analysis here and in the main text produced two observations. The first is that there

is a relationship between extra spikes and chaotic dynamics: if one extra presynaptic spike

causes more than one extra postsynaptic spike in a local network, then small perturbations

grow, and network dynamics is chaotic. The second is that the number of extra spikes

predicts, quantitatively, via Eq. (S16), a lower bound on the intrinsic noise at equilibrium,

where intrinsic noise refers to the level of trial-to-trial fluctuations in the presence of identical

input.

An important component of this work is that the above observations are general, and so do

not depend on the details of the network (other than the existence of strong, local, recurrent

connections). Nevertheless, the second observation in particular required a rather detailed

calculation, so it makes sense to check it in at least one network. We therefore simulated a

large, recurrent network of quadratic integrate and fire neurons, and tested two things. The

first was whether more than one extra spike/spike predicted chaotic dynamics; the second

was whether Eq. (S16) was satisfied. Note that numerous simulations have already shown

that large networks of spiking neurons tend to be highly chaotic.20–24 What is new here is

the test of the relationship between the number of extra spikes/spike and the trial-to-trial

fluctuations.

The network we use has been describe previously25 (although this version is slightly

simpler in that we did not include spike-frequency adaptation). The parameters of the

network are given in Table S1. The key quantities are the number of neurons (10,000), of

which 80% are excitatory, and the connection probability between any two neurons (0.25),

producing, on average, 2,500 connections per neuron. We simulated 8 networks that differed

only in their PSP size, but were otherwise identical; these are labeled 1-8, and their PSP
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Table S1. Network parameters. The neurons also received external Poisson input from ex-
citatory and inhibitory neurons firing at 1,000 Hz and generating 2 mV PSPs. We performed
one set of runs with a step size of 0.1 ms, but it had virtually no effect on our results. See
Latham et al.25 for a complete description of the network.

number of neurons 10,000
fraction of inhibitory neurons 0.2
connection probability 0.25
membrane time constant 4.0 ms
synaptic time constant 0.5 ms
resting membrane potential -65 mV
threshold -50 mV
excitatory reversal potential 0 mV
inhibitory reversal potential -80 mV
step size 0.5 ms

sizes are given in Table S2. For the different networks the PSP sizes were chosen so that the

firing rates for both excitatory and inhibitory neurons was about 5 Hz and there were no

strong oscillations.

Spike rasters and a representative membrane potential for network 8 are shown in Fig.

S8. These are typical; in fact, the plots for all the other networks look virtually identical. In

these plots an extra spike was added at t = 0, but, because of the high connectivity, it had

no visible effect on either the spike rasters or the membrane potential.

Our first step is to compute the probability of an extra postsynaptic spike given an extra

presynaptic spike on a connected neuron, denoted p1, from network simulations. Here we

Table S2. The probability (p1) and number (Nextra) of extra spikes versus PSP sizes for
the eight networks. “E” and “I” refer to excitatory and inhibitory, respectively. PSP size
is in mV. There was no spread in connection strength, so all PSPs were the same size.
For all networks, the average firing rates of both excitatory and inhibitory neurons was
approximately 5 Hz.

Network E → E E → I I → E I → I p1 Nextra

1 0.11 0.11 -0.17 -0.16 0.0010 2.5
2 0.15 0.16 -0.25 -0.23 0.0011 2.7
3 0.20 0.22 -0.35 -0.35 0.0015 3.6
4 0.35 0.39 -0.63 -0.65 0.0018 4.4
5 0.60 0.66 -1.05 -1.10 0.0021 5.2
6 0.75 0.80 -1.10 -1.10 0.0024 5.9
7 1.30 1.50 -1.70 -1.80 0.0023 5.7
8 1.70 1.60 -2.20 -2.00 0.0023 5.8
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Figure S8: Simulations of network 8
from Table S2. a. Spike rasters for 100
randomly chosen neurons (out of 10,000).
The bottom 20 are inhibitory; the top 80
are excitatory. An extra spike was added
at t = 0 s, but its effects are not visible
in this plot. b. Membrane potential of a
randomly chosen excitatory neuron.

have a big advantage over the in vivo experiments: we can generate two runs with identical

parameters and initial conditions, add a spike on the second one, and then count how many

extra spikes were produced. For each network, we did this for 300 pairs of runs, each time

with different initial conditions (the neurons had different membrane potentials at the start

of the run), and with an extra spike on a different neuron. We counted spikes on all cells

postsynaptic to the one that produced the extra spike, so, given that the average number of

connections per neuron is 2,500, 300 pairs of runs gave us approximately 750,000 samples.

The results are shown in Fig. S9 for the eight networks listed in Table S2. Plotted is

the cumulative number of extra postsynaptic spikes per neuron versus time relative to the

presynaptic spike. Note that the rise time is relatively slow. This is because quadratic

integrate and fire neurons (which we used in our simulations) are relatively slow to fire:

during an action potential, it takes 3-5 ms for the membrane potential to go from rest to

peak. This also explains the decrease in rise time with decreasing PSP size: spike generation

in the quadratic integrate and fire neuron is much like a ball rolling off the top of a hill, and

smaller PSPs correspond to smaller initial kicks to the ball.

The slow rise time made it difficult to identify exactly where the curves saturate. However,

as we will see in Fig. S11 below, our results are insensitive to the precise value we choose.
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Figure S9: Cumulative probability of an
extra spike for the eight networks given in
Table S2. The lowest curve corresponds
to network 1, the next lowest to network
2, and so on. The intersections of the
dashed line with the cumulative proba-
bility curves constitute our estimates for
the probability of an extra spike.

Thus, we drew a line through the saturation point of the highest and lowest curves, as

determined by eye (dashed line in Fig. S9), and used the intersection of that line with the

cumulative probability curves as our estimate of the probability of an extra spike.

For all networks, the number of extra postsynaptic spikes per presynaptic spike is greater

than 1 (last column in Table S2). Thus, they should all exhibit chaotic dynamics. To see if

they do, in Fig. S10 we plot spike rasters immediately before and after a spike, and, below

that, the standard deviation of the difference in membrane potentials between trials that did

and did not have an extra spike at time t = 0. We show only networks 1 and 8, the ones

with the smallest and largest number of extra spikes/spike, respectively.

There are two features to take away from Fig. S10. First, because each spike in network

1 (panels a and c) produced only about 2.5 extra spikes/spike (Table S2), the network is

not very chaotic. Thus, after the extra spike at t = 0, the spike times on the two trials

were closely related, if not identical (to within the step size) Nevertheless, close inspection

indicates that there are some missed and extra spikes, and, as can be seen from panel c,

perturbations grow rapidly: within about 100 ms the difference between the membrane

potentials on the two trials has asymptoted to about 1 mV. Second, even though network 8

(panels b and d) produced only about a factor of two more extra spikes/spike than network

1 (5.8 versus 2.5; Table S2), shortly after the extra spikes, spike times on the two trials were

completely unrelated. This is reflected in the difference in membrane potentials between the

two trials, which asymptoted to a value close to the total average standard deviation.

So far, none of this is surprising, as numerous studies have already shown that spiking

networks are chaotic.20–24 What our networks allow us to do that is new is to verify our
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Figure S10: The effect of one extra spike. a, b. Spike rasters without (red) and with (blue)
an extra spike for 40 randomly chosen neurons, the bottom 10 of which are inhibitory. Panels
a and b correspond to networks 1 and 8 from Table S2, respectively. The extra spike was
added at time t = 0. c, d. Standard deviation of the membrane potential (cyan) and the
difference between the membrane potential with an extra spike and without one (magenta),
averaged over the 300 pairs of runs, again for networks 1 and 8. Insets show the voltage
difference on a single neuron (black traces), along with a blowup of the magenta trace (note
the different voltage scales in panels c and d). To reduce the effect of spikes when computing
standard deviation, voltage was truncated above -30 mV and below -60 mV. Averages were
taken over 300 trials.

prediction of the lower bound on the trial-to-trial fluctuations at fixed input (the magenta

traces in Figs. S10c and d). This lower bound, denoted (as above) σV , is given by Eq.

(S16) in terms of two quantities: ∆Vmax and ξ. The first is just the trial averaged standard
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Figure S11: Lower bound on the ra-
tio σV /∆Vmax (red line) along with the
simulated values for 12 randomly chosen
neurons in each of the 8 networks (black
dots). Larger ξ corresponds to larger net-
work index (e.g., network 1 corresponds
to the smallest value of ξ, network 2 to
the next smallest, and so on).

deviation of the membrane potential (cyan traces in Figs. S10c and d). The second is given

in Eq. (S17). Because we used identical connection strengths for all neurons, we can replace

the term v2
E(t) that appears in Eq. (S17) with v2

E(t). Then, combining the relationships

η = p1 × (charge per spike) and (charge per spike) = R−1
∫

dt vE(t), Eq. (S17) becomes

ξ ≡
exp[(κ log κ)/(κ − 1)]

2π1/2(1 + κ)

p1KEVEPSP

∆Vmax

where VEPSP is the EPSP size between excitatory neurons. To derive this expression, we

used Eqs. (S38) and (S39) to convert the ratio
∫

dt v2
E(t)/

∫

dtvE(t) into a function of κ. We

take κ to be the ratio of the synaptic to the membrane time constant; from Table S1, we see

that κ = 0.125.

In Fig. S11 we plot the ratio σV /∆Vmax versus ξ for 12 randomly chosen neurons from

each of our 8 networks (black dots). To compute σV /∆Vmax, we made plots like the one

shown in Figs. S10c and d, computed the average heights of the magenta and cyan traces,

and from that computed their ratio. We also plot, in red, the lower bound on σV /∆Vmax,

which is given in Eq. (S16). In all cases, the network simulations produce ratios well above

the predicted lower bound, thus verifying our calculations. The bound turns out to be

not very tight, which is not surprising given the number of inequalities that went into its

derivation. Note that we stopped the simulations at a relatively low value of ξ. We did this

because even with ξ < 0.5, σV /∆Vmax was close to its maximum value of 1. Increasing ξ

would not, therefore, have provided much extra information.

Finally, in Fig. S12 we plot the network averaged probability of an extra spike (blue

traces). These traces were computed by counting the total, network-wide, number of extra

postsynaptic spikes produce by an extra presynaptic spike. The salient feature of these plots
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Figure S12: Effect of extra spikes on the
network. Blue: cumulative probability of
an extra spike, averaged over all neurons
in the network, for the 8 networks given in
Table S2. Red: Cumulative probability
of an extra spike; these curves are identi-
cal to the ones in Fig. S9.

is that, when extra spikes are averaged over the whole network, the effect is very small – the

probability for network 8 is about 1 in 5,000. This number does not apply directly to our

experiments, as the average probability of an extra spike was about 5 times higher in our

experiments than it was for network 8 (28 versus 5.8). However, it indicates that detection

of the increase in firing induced by a single spike is highly nontrivial.

8. Error analysis

Many of our quantities have large error bars, so we must consider full distributions rather

than using a linear approximation; this makes error analysis nontrivial. In this section we

provide details of exactly how errors are computed, and we derive confidence limits on the

number of extra spikes and the voltage fluctuations.

The number of extra spikes, which we denote here Nex, is given by

Nex = ηQK (S27)

where η is slope of the regression line (Fig. 3b, main text) in units of probability/charge, Q

is the average charge in an EPSP, and K is the average number of connections per neuron.

In fact, Q is not a fundamental quantity; it depends on EPSP amplitude and membrane

resistance, both of which carry uncertainty. We thus use Eqs. (S1) and (S38) to write

Q =
1

R
V EPSP τdecay exp[(κ log κ)/(κ − 1)]

where τdecay is the decay time of EPSPs and κ is the ratio of rise to decay times of EPSPs

(1.7 and 8 ms, respectively; see Methods). Inserting this expression into Eq. (S27) and using
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τdecay = 8 ms and κ = 1.7/8, we have

Nex = τdecay exp[(κ log κ)/(κ − 1)]
ηV EPSPK

R
= 12.15

ηV EPSPK

R
(S28)

where the factor of 12.15 has units of ms.

The variance of the voltage fluctuations, σ2
V , depends on the parameter ξ (see Eq. (S16)).

Combining Eqs. (S17-S19), ξ is written

ξ =
0.8 e0.94

π1/2

exp[2(κ log κ)/(κ − 1)]

2(1 + κ)

τdecay

∆Vmax

ηV
2

EPSPK

R
= 8.31

ηV
2

EPSPK

R∆Vmax
. (S29)

The factor of 0.8 translates from total number of connections, K, to the number of excitatory

connection, KE , and the factor of e0.94 translates from V 2
EPSP to V

2

EPSP (see Eq. (S19)).

The factor of 8.31 has units of ms.

Our goal now is to determine the distribution of Nex and ξ given the distributions of the

variables they depend on. Since all quantities are non-negative, we assume that they follow

a log normal distribution. In the next section, we show that if a set of variables is related

via

z ≡
∏

i

xni

i , (S30) {zprod}

where the xi are log normal and the ni are integers, then z is also log normal. Furthermore,

if log xi has mean µi and variance σi, then the mean and variance of log z, denoted µz and

σ2
z , are given by

µz =
∑

i

niµi (S31a)

σ2
z =

∑

i

n2
i σ

2
i . (S31b)

{mu_sigma_z}

We also show that the mean and variance of z, denoted 〈z〉 and 〈δz2〉, are related to the

mean and variance of the xi, denoted 〈xi〉 and 〈δx2
i 〉, via
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Table S3. Statistics of η, V EPSP , K, and R. “mean” and “sd” are the mean and standard
deviations of the parameters, δ2

i is the ratio of the variance to the square of the mean, as
defined in Eq. (S33), and µi and σi are the mean and standard deviation of the logs of the
parameters, computed from Eq. (S37). See Table S4 (Sec. 11) for additional details on these
parameters.

variable mean sd δ2
i µi σi

η (prob/nC) 0.0608 0.0096 0.157 -2.81 0.156

V EPSP (mV) 1.075 0.225 0.209 0.0509 0.207
K 1500 500 0.333 7.26 0.325
R (MΩ) 42 4.3 0.102 3.73 0.102

〈z〉 =
∏

i

〈xi〉
ni

(

1 + δ2
i

)(n2
i
−ni)/2

(S32a)

〈δz2〉 = 〈z〉2

[

∏

i

(

1 + δ2
i

)n2
i − 1

]

(S32b)

{zbar}

where

δ2
i ≡

〈δx2
i 〉

〈xi〉2
. (S33) {del2}

Let us apply these relationships to the expressions for Nex and ξ, Eqs. (S28) and (S29).

Both of these expressions depend on four variables: η, V EPSP , K, and R. Their relevant

parameters – mean, variance, etc. – are listed in Table S3. Using this table and applying

Eq. (S32), we see that

mean[Nex] = 12.15
0.0608 × 1.075 × 1500

42
(1 + 0.1022)

Var[Nex] = 〈Nex〉
2
[

(1 + 0.1572)(1 + 0.2092)(1 + 0.3332)(1 + 0.1022) − 1
]

mean[ξ] = 8.31
0.0608 × 1.0752 × 1500

42∆Vmax

(1 + 0.2092)3/2(1 + 0.1022)

Var[ξ] = mean[ξ]2
[

(1 + 0.1572)(1 + 0.2092)4(1 + 0.3332)(1 + 0.1022) − 1
]

.

Carrying out the arithmetic, we have
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Nex = 28.4 ± 12.7 (S34a)

ξ =
21.42 ± 12.95

∆Vmax

. (S34b)

{nex_xi}

Finally, we need the mean and variance of log ξ. Using Eqs. (S29) and (S31) and Table

S3, these are given by

mean[log ξ] = log 8.31 + log 0.0608 + 2 log 1.075 + log 1500 − log 42 − log ∆Vmax (S35a)

Var[log ξ] = 0.1562 + 4 × 0.2072 + 0.3252 + 0.1022 . (S35b)

{logxi}

Performing the arithmetic gives us Eq. (S20).

9. The log normal distribution

In this section we derive Eqs. (S31) and (S32). We start by writing down the log normal

distribution of the xi. Using, as above, µi and σ2
i for the mean and variance of of log xi, the

distribution of log xi is

p(log xi) =
exp[−(log xi − µi)

2/2σ2
i ]

(2πσ2
i )

1/2
.

Taking logs of both sides of Eq. (S30), we have

log z =
∑

i

ni log xi .

Since log z is linear in the log xi, z must also have a log normal distribution,

p(log z) =
exp[−(log z − µz)

2/2σ2
z ]

(2πσ2
z)

1/2
,

with µz and σ2
z given by Eq. (S31).

Equation (S31) tells us the relationship between the mean and variance of log z and the

mean and variance of log xi. What we typically know, however, is the mean and variance of
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xi, and we want to use that to determine the mean and variance of z. To translate between

the two, we use the fact that (as is easy to show)

〈z〉 = eµz+σ2
z/2 (S36a)

〈δz2〉 = 〈z〉2
[

eσ2
z − 1

]

(S36b)

{zmoments}

where, as above, 〈z〉 and 〈δz2〉 are the mean and variance of z, respectively.

We can use Eq. (S31) to express µz and σz in terms of the µi and σi. It is convenient to

take one further step and express the right hand side of Eq. (S36) in terms of the mean and

variance of xi. For this we invert Eq. (S36) (and replace the subscript z with i), leading to

eµi =
〈xi〉

(1 + δ2
i )

1/2
(S37a)

eσ2
i = 1 + δ2

i (S37b)

{exps}

where δ2
i is given in Eq. (S33). Then, inserting Eq. (S31) into (S36), using (S37), and

performing a small amount of algebra, we arrive at Eq. (S32).

10. Difference of exponentials – normalization and integrals

In our analysis we assume a difference of exponentials for both PSPs and current. This

produces a relatively complicated relationship between the rise and decay times and the

peak amplitude. Here we write down that relationship, and also compute the time integral

of both the difference of exponential and its square.

Consider a function f(t) that is a difference of exponentials with rise time τrise, decay

time τdecay, and amplitude f0. This function has the form

f(t) = f0 Θ(t)
e−t/τdecay − e−t/τrise

(1 − κ) exp [−(κ log κ)/(1 − κ)]

where

κ ≡
τrise

τdecay
.



Supporting Information for London et al., “Sensitivity to perturbations ...” 39

With this normalization, it is straightforward to show that the maximum value of f(t) is f0.

We need two quantities: the time integral of f(t) and f 2(t). These are given by, respec-

tively,

∫

dt f(t) = f0τdecay exp[(κ log κ)/(κ − 1)] (S38) {intf1}

and

∫

dt f 2(t) = f 2
0 τdecay

exp[2(κ log κ)/(κ − 1)]

2(1 + κ)
. (S39) {intf2}

11. List of parameters

Table S4. Mean and standard deviation (sd) of parameters used to construct both the
number of extra postsynaptic spikes per presynaptic spikes and the distribution of voltage
fluctuations.

variable mean sd source

number of connections, K 1500 500 literature26,27

EPSP amplitude (mV) 1.075 0.225 literature13–16

EPSP rise time (ms) 1.7 – experiment – Sec. 4
EPSP decay time (ms) 8.0 – experiment – Sec. 4
average membrane resistance (MΩ) 42 4.3 experiment – Sec. 4
slope of regression line (prob/pC) 0.0608 0.0096 experiment – Fig. 3b, main text
∆Vmax (mV) 2.25-4.57 – experiment – Fig. S7
current rise time (ms) 0.3 – experiment – Sec. 4
current decay time (ms) 1.7 – experiment – Sec. 4

charge/EPSP (nC) 0.31 0.061 derived – Eq. (S1)
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